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For many typical instances where Monte Carlo methods are applied attempts
were made to find unbiased estimators, since for them the Monte Carlo error
reduces to the statistical error. These problems usually take values in the scalar
field. If we study vector valued Monte Carlo methods, then we are confronted with
the question of whether there can exist unbiased estimators. This problem is
apparently new. Below it is settled precisely. Partial answers are given, indicating
relations to several classes of linear operators in Banach spaces. � 1996 Academic

Press, Inc.

1. Introduction and Notation

In many practical applications the program designer is confronted with
the ``curse of dimensionality'', an exponential dependence on the dimen-
sion, which is inherent in most error estimates provided by classical
numerical analysis, see e.g. [TWW88] for a sample of typical numerical
problems and the respective error estimates.

Often this can be overcome by choosing Monte Carlo methods, i.e.,
numerical methods involving random parameters in the computational
process, see [HH64] for an excellent, by now classical treatment on the
applicability of Monte Carlo methods. Within the classical theory one
prefers unbiased Monte Carlo estimators, since they are self-focusing if the
numerical simulation is repeated.

The ``crude Monte Carlo integration'', cf. [HH64, Chapter 5.2], is
certainly the most prominent example. Suppose we want to compute the
integral I( f ) :=�0 f (|) d+(|) for some (square integrable) function
f: 0 � R and probability +. We may regard the mapping f as a real valued
random variable. Then the expectation of this random variable is just I( f ).
This may be rephrased by stating that | � f (|) is an unbiased Monte
Carlo method for the functional I( f ). The basic result within the classical
theory claims, that the sample mean of n independent copies of | � f (|)
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leads to a variance reduction by a factor of 1�- n. In other words, the
crude Monte Carlo integration just described is an unbiased Monte Carlo
error of magnitude 1�- n (The precise notion of Monte Carlo error is
introduced below). This error behavior is typical as long as we want to
approximate a functional of the input data. However, given some func-
tional it may often be hard to find unbiased estimators, see [KW86, ENS89].

Let us also mention recent progress on the existence of unbiased
estimators (in statistical sense). While it has been known since 1956 that
there cannot exist such unbiased estimates for density estimation, see
[Ros56], progress has recently been made by [LB93]. The authors prove
the nonexistence of informative unbiased estimators for singular problems,
which exhibits the necessity of a bias-variance trade-off as an essential com-
ponent for such kind of problems, see the discussion in the introduction
there. Within our framework, the notion of informativity corresponds to
the requirement of finite errors. On the other hand, all problems studied
below are not singular in their sense. The authors emphasize in Note 1 that
their results are independent of the choice of the norm in the target space.
This phenomenon is no longer true within the present context of Monte
Carlo methods and is one of the reasons that our arguments must be com-
pletely different, emphasizing geometric properties of the target space,
where the error is measured.

Below we are concerned with vector valued Monte Carlo methods for the
randomized approximation of linear mappings. The classical results extend
easily from Monte Carlo methods for the approximation of linear func-
tionals to a finite number of those, if we gather unbiased estimates for each
component. The problem is how far one can proceed by this: Are there
infinite dimensional problems, which admit unbiased Monte Carlo
estimators?

This problem is apparently new. As an illustration let us briefly and
informally introduce the following

Example 1. Let f be any periodic function defined on the interval
[0, 2?], which has a (generalized) derivative in L� 2(0, 2?), the space of all
periodic square integrable functions. It is well known that any such func-
tion expands into a Fourier series (converging in L� 2(0, 2?)), which means,
that we have

f (x)= :
�

k=1

#k ( f )e&ikx, x # [0, 2?], (1)

with Fourier coefficients

#k ( f ) :=
1

2? |
2?

0
f (!)e&ik! d!. (2)
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For such functions an unbiased Monte Carlo estimator (using Fourier
coefficients) can be obtained in the following (trivial) way by choosing a
member of the Fourier series at random. Precisely, let pk :=6�(?2k2), k # N,
and choose (?2k2�6) #k( f )e&ikx, k # N, with probability pk , respectively.
The average performance of this method yields the Fourier series of f,
provided the random variable

k �
?2k2

6
#k ( f )e&ikx

taking values in L� 2(0, 2?) is integrable. But we even have the stronger
square integrability from

:
�

k=1

pk
?4k4

36
|#k ( f )|2 &e&ikx&2

2=
?2

6
:
�

k=1

k2 |#k( f )| 2<�, (3)

for functions with square integrable derivative, see [Pie87].

The above example can be considered as a special instance of
approximating a diagonal mapping in the space l2 of square summable
sequences. To see this we switch from the spaces of functions to the respec-
tive spaces of Fourier coefficients in the following way. Assign any function
f the sequence xk :=k#k ( f ), k # N. Then the approximation of f is
replaced by the approximation of (#k ( f ))k # N . The differentiability assump-
tion ensures that ��

k=1 |xk| 2<�. This means that we assign every
sequence (xk)k # N the sequence ((1�k)xk)k # N , corresponding to a diagonal
mapping D_: l2 � l2 .

Summarizing, we have switched from the random approximation of
functions to the random approximation of a diagonal mapping between
Hilbert spaces. Within this framework a theory of stochastic numerical
methods is available, see [Mat91, Hei94]. The basic notion will be the
notion of a (linear) Monte Carlo method. Throughout the paper we restrict
ourselves to linear Monte Carlo methods only. Let X and Y be Banach
spaces. Denote by L(X, Y) the space of all bounded linear operators and
by F(X, Y) the subspace of all operators of finite rank, cf. [Pie80, Pie87]
for notation from the theory of operators in Banach spaces. By Fk(X, Y)
we denote the subset of operators of rank at most k. Corresponding to
[Mat91, Hei94, Mat94] we propose the following

Definition 1. A triple

P :=([0, F, P], u, k)

3UNBIASED MONTE CARLO ESTIMATORS
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is called a (linear) Monte Carlo method, if

(1) [0, F, P] is a probability space.

(2) u: 0 � F(X, Y) is such that the mapping 8: X0_0 � Y, defined
by

8(x, |) :=(u(|))(x), x # X, | # 0,

is product measurable into Y and the set [(u(|))(x), x # X, | # 0] is a
separable subset in Y.

(3) The cardinality function k: 0 � N is a measurable natural
number, for which

u| :=u(|) # Fk(|)(X, Y), | # 0.

Remark 1. For linear Monte Carlo methods as introduced above we
could directly assign k(|) :=rank(u(|)), since this would result in an
appropriate measurable cardinality function. However, for general classes
of methods such an assignment would not be meaningful, so we kept the
definition with the more general choice of cardinality function, see [Hei94,
Mat94].

For such Monte Carlo methods we can assign the cardinality

MC-card(P) :=|
0

k(|) dP(|).

By definition, for every x # X the mapping

| � u| (x)

is a Radon random variable in Y, see [LT91] for spaces of Banach space
valued random variables. Therefore the error of any Monte Carlo method
P :=([0, F, P], u, k) for an operator S: X � Y at input x # X may be
defined as

e(S, P, x) :=\|0
&S(x)&u| (x)&2

Y dP(|)+
1�2

,

while the overall performance is given by

e(S, P) := sup
&x&X�1

e(S, P, x).
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We agree to denote by

amc
n (S) :=inf { sup

&x&X�1 \|0
&S(x)&u| (x)&2

Y dP(|)+
1�2

, MC-card(P)<n=
the nth Monte Carlo approximation number of the linear operator
S: X � Y, see [Mat91] for more information on that topic. We shall make
use of the following submultiplicativity property

amc
n (RST)�&R& amc

n (S) &T&, (4)

whenever the product is correctly defined.
If a Monte Carlo method P has a finite error for some linear operator

S, i.e., e(S, P)<�, then the function

SP(x) :=|
0

u| (x) dP(|)

exists and denotes the respective expectation. From now on we make the
assumption that

sup
&x&X�1

|
0

&u| (x)&2
Y dP(|)<�,

ensuring that e(0, P)<�, where 0 denotes the zero operator. It is the aim
of this paper to study properties of SP .

Definition 2. An operator S # L(X, Y) admits an unbiased Monte Carlo
method if there is a Monte Carlo method P with

(1)

(2)

MC-card(P)<�,

sup
&x&X�1

|
0

&u| (x)&2
Y dP(|)<�,

and

(3) S(x)=SP(x), x # X.

If S # L(X, Y) admits an unbiased Monte Carlo method then we let

u(S) :=inf { sup
&x&X�1 \|0

&u| (x)&2
Y dP(|)+

1�2

, P is unbiased for S= . (5)
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This turns into a norm and we have &S: X � Y&�u(S). As explained
above, property (2) is equivalent to the statement that P has a finite error
for some bounded operator acting between X and Y. Within this
framework it is immediate that any finite rank operator L admits an
unbiased Monte Carlo method by letting P be choosing L with probability
1. However, there are different ways of representing a given finite dimen-
sional mapping, leading to different Monte Carlo methods.

Example 2. Let Idm: Rm � Rm be the identity and ej , j=1, ..., m,
denote the unit vector basis in Rm.

1. (trivial ) representation:

Idm(x)=
1
m

:
m

j=1

(mxj)ej , x=(x1 , ..., xm).

2. (nuclear) representation:

Idm(x)=
1

2m :
=1 , ..., =m= \1

\ :
m

j=1

=j xj+\ :
m

j=1

=j ej+ , x=(x1 , ..., xm).

Observe that it is much more elaborate to find unbiased Monte Carlo
methods with prescribed properties. We will not consider that problem.

2. Diagonal Mappings D_: l2 � lq , 1�q��

We are going to study diagonal mappings in sequence spaces. To make
things precise we need to introduce the Lorentz sequence spaces, cf. [Pie87,
2.1]. For any sequence x=(! j) j # N of real numbers, which is convergent
to 0 we assign with (sn (x))n # N the non-increasing rearrangement (in
modulus) of x. The (real) Lorentz space lr, w consists of all sequences x for
which the sequence (n1�r&1�wsn (x))n # N belongs to lw equipped with the
norm arising from this identification. Explicitly, if 1�w<� then we let

&x&r, w :=\ :
�

j=1

[n1�r&1�wsn (x)]w+
1�w

while for w=� we put

&x&r, � :=sup
n # N

[n1�rsn (x)].

6 PETER MATHE�



File: 640J 292007 . By:CV . Date:06:02:00 . Time:16:03 LOP8M. V8.0. Page 01:01
Codes: 2921 Signs: 1890 . Length: 45 pic 0 pts, 190 mm

Observe that we can identify for any 1� p<� the classical sequence
spaces lp with lp, p , while we denote by c0 the space l�, � and by l� the
space of all bounded sequences equipped with the supremum norm.

We begin our study by considering a specific class of diagonal operators.
Given any sequence _=(_j) j # N of real numbers, let us consider the
mapping x=(xj) j # N � (_j xj) j # N . Denote this mapping by D_ . For choices
of 1�p, q�� the operator D_ acts continuously from lp to lq if and only
if the diagonal _ belongs to lr with 1�r=max[0, 1�q&1�2].

The simple construction outlined in the introductory section implies the
existence of unbiased Monte Carlo methods for D_: l2 � l2 whenever _ # l2 ,
which is more than required for continuity. This is typical and we shall
derive necessary conditions later. However, the class of operators admitting
an unbiased Monte Carlo method can be enlarged for other spaces,
employing a more involved construction. This is provided in the following

Theorem 1. A diagonal mapping D_: l2 � lq , q<�, admits an unbiased
Monte Carlo method if _ # lq . Moreover we have u(D_: l2 � lq)�&_&q .

Before proving the theorem we need a preparatory lemma. Let =m denote
the uniform distribution on the extreme points of Bm

� , i.e., all vectors
| # [+1,&1]m. Thus the basic probability space is [[+1,&1]m, Fm, =m].
For computations involving =m the following lemma is useful.

Lemma 1. Let m>1.

(1) For all 1� j, k�m we have

|
[+1,&1]m

(|, ej)(|, ek) d=m(|)={1, if j=k
0, else.

(6)

(2) For all a # Rm we have

\|[+1,&1]m
|(|, a) | 2 d=m(|)+

1�2

=&a&2 .

Proof. The second statement is a consequence of the first one. To prove
the first statement, let us observe that for | # [+1,&1]m and 1� j�m the
number (|, ej) is \1. This implies �[+1,&1] (|, ej) 2 d=m(|)=1. If j{k
then

card[| # [+1,&1]m, (|, ej)(|, ek)=1]

=card[| # [+1,&1]m, (|, ej)(|, ek)=&1],

which is equal to 2m&1, and from which the proof can be completed. K
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Remark 2. The above lemma is well known. The reader familiar with
probability theory will recognize that the distribution of (|, a) is the dis-
tribution of the sum �m

j=1 =j (ej , a) , where the =j are independent numbers
taking values +1 and &1 with equal probability, i.e., they form a Bernoulli
sequence.

Proof of Theorem 1. The proof is constructive. We are going to design
a concrete Monte Carlo method of cardinality 1. Let 0m :=[+1,&1]m

equipped with =m, introduced above as probability. Denote by 0 :=
�m # N 0m the disjoint union, equipped with the _-algebra F, generated
from the sequence Fm. A probability P will be given as a mixture of =m in
the following way.

Observe, that for =>0 we can find a decreasing sequence ({m)m # N , such
that {1=1 and _m={m ;m , m # N, limm � � {m=0 and ��

j=1 |;j |
q�

(1+=)q ��
j=1 |_j |

q. For a proof of this fact we refer to [Pie80, 8.6.4]. Let
pm :={m&{m+1 , m # N. Then we have pm�0 and ��

m=1 pm={1=1,
which means that this sequence gives rise to a probability P by letting P :=
��

m=1 pm =m. (We implicitly extended the probabilities =m to all 0.) So far
we have defined a probability space [0, F, P]. Now, define a mapping
u: 0 � F(l2 , lq) by

u| (x) :=\ :
m

j=1

|j (x, ej)+\ :
m

j=1

|j ;j ej+ , |=(|1 , ..., |m), x # l2 .

It is readily checked that P=([0, F, P], u, 1) is a linear Monte Carlo
method of cardinality 1. Moreover, for x # l2 we have by Lemma 1

|
0

&u| (x)&2
q dP(|)= :

�

m=1

pm |
0m

&u| (x)&2
q d=m(|)

= :
�

m=1

pm |
0m } :

m

j=1

|j (x, ej) }
2

" :
m

j=1

|j ;j ej"
2

q
d=m(|)

� :
�

m=1

pm &x&2
2 \ :

m

j=1

|;j |
q+

2�q

�(1+=)2 &x&2
2 \ :

�

j=1

|_j |
q+

2�q

,

such that u(D_: l2 � lq)�(��
j=1 |_j |

q)1�q, provided P was unbiased for D_ .
But this is true, since

T(x) :=|
0

u| (x) dP(|), x # l2 ,

8 PETER MATHE�
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is well-defined and equal to

T(x)= :
�

m=1

pm |
0m \ :

m

j=1

|j (x, ej)+\ :
m

j=1

|j ;j ej+ d=m(|)

= :
m

m=1

pm :
m

j=1

;j(x, ej) ej

= :
�

j=1

;j \ :
m

m= j

pm+ (x, ej) ej

= :
�

j=1

;j {j (x, ej) ej

=D_ (x),

again, by Lemma 1. The proof of the theorem is complete. K

Analogously we could prove

Corollary 1. A diagonal mapping D_: l2 � l� admits an unbiased
Monte Carlo method provided the diagonal tends to 0.

All operators considered so far have been compact. So the question
arises, whether this is typical and leads to the following

Open Problem. Does the identity Id: l2 � l� admit an unbiased Monte
Carlo method?

Below we turn to the question of whether there are necessary conditions
for the existence of unbiased Monte Carlo methods. Such conditions will be
expressed in terms of the Monte Carlo approximation numbers, introduced
above. Therefore we are looking for a reformulation of Theorem 1. To do
this we need the following result, which points at the relation between the
ordinary approximation numbers and their Monte Carlo counterpart, see
[Mat91, Lemma 5]. Topics (2) and (3), below provide typical instances
where the Monte Carlo and the (ordinary) approximation numbers differ.

Proposition 1. There is a constant C<� such that for all m, n # N we
have

(1)

amc
n (Id: l m

2 � l m
q )�C

m1�q

n1�q$ ,

if 1�q�2 and 1�q$=1&1�q,

9UNBIASED MONTE CARLO ESTIMATORS
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(2)

amc
n (Id: l m

2 � l m
q )�C

m1�q

n1�2 ,

if 2�q<�, and

(3)

amc
n (Id: l m

2 � l m
�)�C �log(1+m)

n
.

For the convenience of the reader we shall provide a proof, different
from the one given previously in [Mat91, Hei94], thereby using the con-
struction outlined above. We need a geometric property of Banach spaces.

Definition 3. A Banach space Y has type p, 1�p�2, if there is a con-
stant C<�, such that for all probability spaces [0, F, P], k # N and
independent random elements (1 , ..., (k in L2(0, F, P, Y), for which
�0 (j (|) dP(|)=0, j=1, ..., k, we have

\|0 " :
k

j=1

(j (|)"
2

Y
dP(|)+

1�2

�C \ :
k

j=1
|

0
&(j (|)&p

Y dP(|)+
1�p

. (7)

The smallest constant satisfying the above inequality shall be called the
type-p-constant and is denoted by Tp (Y).

Remark 3. The notion of a type of a Banach space was originally intro-
duced in [MP76], where this definition was given in terms of Rademacher
sequences. But, as can be seen easily, it can be extended to the above situa-
tion, albeit the type-p-constant is different by a factor of at most 2, see
[LT91, Chapter 9.2], but also [HJ74]. It can be seen that T2(R)=1.
Moreover, every finite-dimensional Banach space has type p, 1�p�2,
although the respective constant may depend on the dimension, cf. [TJ88,
Chapter 1, 94]. However, we have

Tq (l m
q )�C, if 1�q�2

and

T2(l m
q )�C {1

- log(1+m),
if 2�q<�
if q=�

for some universal constant C<�.
Now we are prepared to provide the proof of Proposition 1, following

the one given in [Mat94].

Proof of Proposition 1. We shall carry out the estimates only for
2�q<�. The other cases follow the same lines. By Theorem 1 there is an

10 PETER MATHE�
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unbiased Monte Carlo method P=([0, F, P], u, 1) leading to
u(Id: l m

2 � l m
q )�m1�q. The sample mean

Pn=([0n, Fn, Pn], v, n)

of n independent copies of P, which is defined by

v|n (x) :=
1
n

:
n

j=1

u|j (x), x # l m
2 , |n :=(|1 , ..., |n) # 0n,

provides another unbiased Monte Carlo method, this time of cardinality n,
which has an error at x # l m

2 , &x&2�1, of

e(Id: l m
2 � l m

q , Pn, x)=\|0 "x&
1
n

:
n

j=1

u|j (x)"
2

q
dPn(|n)+

1�2

(8)

=
1
n \|0 " :

n

j=1

(x&u|j (x))"
2

q
dPn(|n)+

1�2

(9)

�
1

- n
T2(l m

q ) e(Id: l m
2 � l m

q , P). (10)

Since

e(Id: l m
2 � l m

q , P)�&Id: l m
2 � l m

q &+u(Id: l m
2 � l m

q ),

the proof can be completed in case 2�q<�. K

Now we are able to provide the reformulation of Theorem 1 in terms of
the respective Monte Carlo approximation numbers amc

n (D_: l2 � lq), as
promised above.

Corollary 2. Let 1�q<� and put r :=max[2, q$]. If

(amc
n (D_: l2 � lq))n # N # lr, q

then the mapping D_: l2 � lq admits an unbiased Monte Carlo method.

Proof. To simplify the proof we shall assume that the diagonal is non-
negative and nonincreasing.

Since the following diagram is commutative (where Rm assigns every
vector in lq the vector with the first m coordinates, J m denotes the natural
embedding and Dm

_ is the corresponding restriction),

l2 wwwwwww�
D_ lq

Jm
Rm

l m
2 wwwwwww�

D_
m

l m
q

11UNBIASED MONTE CARLO ESTIMATORS
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and &Jm&�1, &Rm&�1, we have by inequality (4) the estimate

amc
n (Dm

_ )�amc
n (D_).

Moreover, we have

_m amc
n (Idm

2, q: l m
2 � l m

q )�an (Dm
_ ), (11)

which can be seen as follows, cf. also [Pie87, 2.9.3]. Without loss of
generality we may assume _m>0. Since

Idm
2, q=(Dm

_ : l m
2 � l m

q ) } (Dm
_ : l m

2 � l m
2 )&1

and

&(Dm
_ : l m

2 � l m
2 )&1&=_&1

m

the estimate (11) follows immediately.
Letting m=2n&1 and inserting the results from Proposition 1 we see

that the sequence (_2n&1)n # N belongs to lq whenever the assumptions from
Corollary 2 are fulfilled. But this is equivalent to (_n)n # N # lq , see e.g.
[Pie87, Prop. 2.1.9]. K

We turn to the question whether there are non-trivial necessary condi-
tions to be imposed on an operator in order to admit an unbiased Monte
Carlo method. In terms of the Monte Carlo approximation numbers a
fairly general condition can be given, provided the target space has some
type p. Indeed, the sample mean construction from the proof of Proposi-
tion 1 implies

Theorem 2. Suppose the Banach space Y has type p, p>1. If an
operator S: X � Y admits an unbiased Monte Carlo method then necessarily
(amc

n (S))n # N # lp$, � .

Taking into account the behavior of the Monte Carlo approximation
numbers of the diagonal mappings and applying a technique similar to the
one of Corollary 2 this transfers to

Corollary 3. Let 1�q<�. If D_: l2 � lq admits an unbiased Monte
Carlo method then _ # lq, � .

Remark 4. A look at the necessary and sufficient conditions proves that
there is only a small gap left. Since the arguments to prove the necessary
conditions are very rough we conjecture that the sufficient conditions are
sharp.

12 PETER MATHE�
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On the class of operators acting between Hilbert spaces we immediately
obtain

Theorem 3. Any Hilbert�Schmidt operator (acting between Hilbert
spaces) admits an unbiased Monte Carlo method. Conversely, if an operator
between Hilbert spaces admits an unbiased Monte Carlo method then
necessarily the sequence of singular numbers belongs to l2, �

Indeed, The norm u, as defined in (5), in easily seen to be unitarily
invariant, such that the result for diagonal operators implies the respective
result for arbitrary ones using the Schmidt-representation, see [Pie87,
2.11.4]. The class of Hilbert�Schmidt operators corresponds to the class of
operators having square summable singular numbers, see [Pie80, 15.5.5],
these corresponding to diagonal mappings having square summable diagonal.

3. Some Relations to Operator Ideals

As could be seen in Theorem 3, Hilbert�Schmidt operators admit an
unbiased Monte Carlo method. The class of such operators is closely
related to the theory of operator ideals as developed in [Pie80]. The first
important (though simple) observation is

Theorem 4. The class of all operators admitting an unbiased Monte
Carlo method turns into a normed operator ideal by letting S � u(S) be the
norm as defined in equation (5).

This immediately implies

Corollary 4. Nuclear operators admit an unbiased Monte Carlo method.

We shall introduce this class of operators below. The assertion of the
corollary follows from the fact that the ideal of the nuclear operators is the
smallest normed ideal. However, a direct proof of the corollary could also
be given using the trivial unbiased representation known from the intro-
ductory example.

Next we shall see that the class of operators admitting an unbiased
Monte Carlo method can be enlarged considerably in many situations. We
shall examplify this by introducing the ideal of (r, p, q)-nuclear operators.

Let 0<r��, 1�p, q�� with 1+1�r�1�p+1�q. Denote by N(r, p, q)

the ideal of (r, p, q)-nuclear operators, i.e., an operator S # L(X, Y) is
(r, p, q)-nuclear, if there is a representation

Sx= :
�

j=1

_j(x, aj) y j , x # X,

13UNBIASED MONTE CARLO ESTIMATORS
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with aj # X$ and yj # Y satisfying

&_&r<�,

wq$((aj) j # N) := sup
&x"&�1 \ :

�

j=1

|(x", aj) | q$+
1�q$

<�

and

wp$((yj) j # N) := sup
&b&�1 \ :

�

j=1

|(b, yj) | p$+
1�p$

<�.

Denote the respective quasi norm by

n (r, p, q)(S) :=inf &_&r wq$((aj) j # N) wp$((yj) j # N),

where the infimum is taken over all possible representations, see [Pie80,
18.1] for more details. In particular we obtain as N (1, 1, 1) the ideal of
nuclear operators mentioned above. The ideal of (r, p, q)-nuclear operators
can be characterized by a factorization property, see [Pie80, 18.1.3]. In fact
every (q, q, 2)-nuclear operator factors through a diagonal mapping from l2

to lq with diagonal belonging to lq . (In case q=� the diagonal converges
to 0.) Together with Theorem 1 and Corollary 1 this provides

Corollary 5. Let 1�q��. Every (q, q, 2)-nuclear operator S admits
an unbiased Monte Carlo method. Moreover we have

u(S)�n (q, q, 2)(S).

The largest ideal of this type which admits unbiased Monte Carlo
methods is obtained as N(�, �, 2) .

For operators acting between Hilbert spaces H and K it is readily
checked that

N(�, �, 2)(H, K)=N(2, 2, 2)(H, K)

and we obtain the Hilbert�Schmidt operators once more, see [Pie80,
18.5.4].
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